21,729 research outputs found

    Linearized solutions of the Einstein equations within a Bondi-Sachs framework, and implications for boundary conditions in numerical simulations

    Full text link
    We linearize the Einstein equations when the metric is Bondi-Sachs, when the background is Schwarzschild or Minkowski, and when there is a matter source in the form of a thin shell whose density varies with time and angular position. By performing an eigenfunction decomposition, we reduce the problem to a system of linear ordinary differential equations which we are able to solve. The solutions are relevant to the characteristic formulation of numerical relativity: (a) as exact solutions against which computations of gravitational radiation can be compared; and (b) in formulating boundary conditions on the r=2Mr=2M Schwarzschild horizon.Comment: Revised following referee comment

    Discrete Nonlinear Schr{\"o}dinger Breathers in a Phonon Bath

    Full text link
    We study the dynamics of the discrete nonlinear Schr{\"o}dinger lattice initialized such that a very long transitory period of time in which standard Boltzmann statistics is insufficient is reached. Our study of the nonlinear system locked in this {\em non-Gibbsian} state focuses on the dynamics of discrete breathers (also called intrinsic localized modes). It is found that part of the energy spontaneously condenses into several discrete breathers. Although these discrete breathers are extremely long lived, their total number is found to decrease as the evolution progresses. Even though the total number of discrete breathers decreases we report the surprising observation that the energy content in the discrete breather population increases. We interpret these observations in the perspective of discrete breather creation and annihilation and find that the death of a discrete breather cause effective energy transfer to a spatially nearby discrete breather. It is found that the concepts of a multi-frequency discrete breather and of internal modes is crucial for this process. Finally, we find that the existence of a discrete breather tends to soften the lattice in its immediate neighborhood, resulting in high amplitude thermal fluctuation close to an existing discrete breather. This in turn nucleates discrete breather creation close to a already existing discrete breather

    Geometric phases in dressed state quantum computation

    Full text link
    Geometric phases arise naturally in a variety of quantum systems with observable consequences. They also arise in quantum computations when dressed states are used in gating operations. Here we show how they arise in these gating operations and how one may take advantage of the dressed states producing them. Specifically, we show that that for a given, but arbitrary Hamiltonian, and at an arbitrary time {\tau}, there always exists a set of dressed states such that a given gate operation can be performed by the Hamiltonian up to a phase {\phi}. The phase is a sum of a dynamical phase and a geometric phase. We illustrate the new phase for several systems.Comment: 4 pages, 2 figure

    High-Order Coupled Cluster Method Calculations for the Ground- and Excited-State Properties of the Spin-Half XXZ Model

    Full text link
    In this article, we present new results of high-order coupled cluster method (CCM) calculations, based on a N\'eel model state with spins aligned in the zz-direction, for both the ground- and excited-state properties of the spin-half {\it XXZ} model on the linear chain, the square lattice, and the simple cubic lattice. In particular, the high-order CCM formalism is extended to treat the excited states of lattice quantum spin systems for the first time. Completely new results for the excitation energy gap of the spin-half {\it XXZ} model for these lattices are thus determined. These high-order calculations are based on a localised approximation scheme called the LSUBmm scheme in which we retain all kk-body correlations defined on all possible locales of mm adjacent lattice sites (k≀mk \le m). The ``raw'' CCM LSUBmm results are seen to provide very good results for the ground-state energy, sublattice magnetisation, and the value of the lowest-lying excitation energy for each of these systems. However, in order to obtain even better results, two types of extrapolation scheme of the LSUBmm results to the limit m→∞m \to \infty (i.e., the exact solution in the thermodynamic limit) are presented. The extrapolated results provide extremely accurate results for the ground- and excited-state properties of these systems across a wide range of values of the anisotropy parameter.Comment: 31 Pages, 5 Figure

    Elasticity-driven Nanoscale Texturing in Complex Electronic Materials

    Get PDF
    Finescale probes of many complex electronic materials have revealed a non-uniform nanoworld of sign-varying textures in strain, charge and magnetization, forming meandering ribbons, stripe segments or droplets. We introduce and simulate a Ginzburg-Landau model for a structural transition, with strains coupling to charge and magnetization. Charge doping acts as a local stress that deforms surrounding unit cells without generating defects. This seemingly innocuous constraint of elastic `compatibility', in fact induces crucial anisotropic long-range forces of unit-cell discrete symmetry, that interweave opposite-sign competing strains to produce polaronic elasto-magnetic textures in the composite variables. Simulations with random local doping below the solid-solid transformation temperature reveal rich multiscale texturing from induced elastic fields: nanoscale phase separation, mesoscale intrinsic inhomogeneities, textural cross-coupling to external stress and magnetic field, and temperature-dependent percolation. We describe how this composite textured polaron concept can be valuable for doped manganites, cuprates and other complex electronic materials.Comment: Preprin

    The single leg squat: when to prescribe this exercise

    Get PDF
    The single leg squat (SLS) is an exercise that has been the subject of numerous research studies in recent years – primarily in the field of physiotherapy and sport rehabilitation, considering where the majority of literature has been published. The unilateral nature of the exercise has encouraged researchers and practitioners to identify what the key muscles are when performing this movement pattern and the factors that may be responsible for enhancing performance during this particular task

    Cauchy boundaries in linearized gravitational theory

    Get PDF
    We investigate the numerical stability of Cauchy evolution of linearized gravitational theory in a 3-dimensional bounded domain. Criteria of robust stability are proposed, developed into a testbed and used to study various evolution-boundary algorithms. We construct a standard explicit finite difference code which solves the unconstrained linearized Einstein equations in the 3+1 formulation and measure its stability properties under Dirichlet, Neumann and Sommerfeld boundary conditions. We demonstrate the robust stability of a specific evolution-boundary algorithm under random constraint violating initial data and random boundary data.Comment: 23 pages including 3 figures and 2 tables, revte

    Exercise technique: the push press

    Get PDF
    The push press exercise has been used for years by coaches as one of many tools to enhance an athletes’ physical development. Recent research has further validated this exercise to augment power development. Thus, the aim of this paper is to outline the benefits this exercise has for strength and conditioning coaches
    • 

    corecore